Stem-loop structure preference for site-specific RNA editing by APOBEC3A and APOBEC3G
نویسندگان
چکیده
APOBEC3A and APOBEC3G cytidine deaminases inhibit viruses and endogenous retrotransposons. We recently demonstrated the novel cellular C-to-U RNA editing function of APOBEC3A and APOBEC3G. Both enzymes deaminate single-stranded DNAs at multiple TC or CC nucleotide sequences, but edit only a select set of RNAs, often at a single TC or CC nucleotide sequence. To examine the specific site preference for APOBEC3A and -3G-mediated RNA editing, we performed mutagenesis studies of the endogenous cellular RNA substrates of both proteins. We demonstrate that both enzymes prefer RNA substrates that have a predicted stem-loop with the reactive C at the 3'-end of the loop. The size of the loop, the nucleotides immediately 5' to the target cytosine and stability of the stem have a major impact on the level of RNA editing. Our findings show that both sequence and secondary structure are preferred for RNA editing by APOBEC3A and -3G, and suggest an explanation for substrate and site-specificity of RNA editing by APOBEC3A and -3G enzymes.
منابع مشابه
The double-domain cytidine deaminase APOBEC3G is a cellular site-specific RNA editing enzyme
APOBEC3G is a cytidine deaminase with two homologous domains and restricts retroelements and HIV-1. APOBEC3G deaminates single-stranded DNAs via its C-terminal domain, whereas the N-terminal domain is considered non-catalytic. Although APOBEC3G is known to bind RNAs, APOBEC3G-mediated RNA editing has not been observed. We recently discovered RNA editing by the single-domain enzyme APOBEC3A in i...
متن کاملFirst-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G.
APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twe...
متن کاملAPOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells
While the ability of APOBEC3G to reduce the replication of a range of exogenous retroviruses is now well established, recent evidence has suggested that APOBEC3G can also inhibit the replication of endogenous retrotransposons that bear long terminal repeats. Here, we extend this earlier work by showing that two other members of the human APOBEC3 protein family, APOBEC3B and APOBEC3A, can reduce...
متن کاملAPOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages
The extent, regulation and enzymatic basis of RNA editing by cytidine deamination are incompletely understood. Here we show that transcripts of hundreds of genes undergo site-specific C>U RNA editing in macrophages during M1 polarization and in monocytes in response to hypoxia and interferons. This editing alters the amino acid sequences for scores of proteins, including many that are involved ...
متن کاملEfficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G
The AID/APOBEC family of enzymes in higher vertebrates converts cytosines in DNA or RNA to uracil. They play a role in antibody maturation and innate immunity against viruses, and have also been implicated in the demethylation of DNA during early embryogenesis. This is based in part on reported ability of activation-induced deaminase (AID) to deaminate 5-methylcytosines (5mC) to thymine. We hav...
متن کامل